1. |
Arroyo-Ataz G, Yagüe AC, Breda JC, et al. Transcriptional, developmental, and functional parallels of lymphatic and venous smooth muscle. bioRxiv, 2024.
DOI:10.1101/2024.07.18.604042
|
2. |
Chen X, Obukhov AG, Weisman GA, et al. Basal ATP release signals through the P2Y2 receptor to maintain the differentiated phenotype of vascular smooth muscle cells. Atherosclerosis, 2024, 395: 117613.
DOI:10.1016/j.atherosclerosis.2024.117613
|
3. |
Salido E, de Medeiros Vieira C, Mosquera JV, et al. The 9p21.3 coronary artery disease risk locus drives vascular smooth muscle cells to an osteochondrogenic state. bioRxiv, 2024.
DOI:10.1101/2024.05.25.595888
|
4. |
Jin Y, Han X, Wang Y, et al. METTL7A-mediated m6A modification of corin reverses bisphosphonates-impaired osteogenic differentiation of orofacial BMSCs. Int J Oral Sci, 2024, 16(1): 42.
DOI:10.1038/s41368-024-00303-1
|
5. |
Wei G, Zhang X, Liu S, et al. Comprehensive data mining reveals RTK/RAS signaling pathway as a promoter of prostate cancer lineage plasticity through transcription factors and CNV. Sci Rep, 2024, 14(1): 11688.
DOI:10.1038/s41598-024-62256-z
|
6. |
Wachtel M, Surdez D, Grünewald TGP, et al. Functional Classification of Fusion Proteins in Sarcoma. Cancers (Basel), 2024, 16(7): 1355.
DOI:10.3390/cancers16071355
|
7. |
Gan P, Eppert M, De La Cruz N, et al. Coactivator condensation drives cardiovascular cell lineage specification. Sci Adv, 2024, 10(11): eadk7160.
DOI:10.1126/sciadv.adk7160
|
8. |
Mann EA, Mogle MS, Park JS, et al. Transcription factor Tcf21 modulates urinary bladder size and differentiation. Dev Growth Differ, 2024, 66(2): 106-118.
DOI:10.1111/dgd.12906
|
9. |
Zhou Y, Sharma S, Sun X, et al. SMYD2 regulates vascular smooth muscle cell phenotypic switching and intimal hyperplasia via interaction with myocardin. Cell Mol Life Sci, 2023, 80(9): 264.
DOI:10.1007/s00018-023-04883-9
|
10. |
Mathai C, Jourd'heuil F, Pham LGC, et al. Regulation of DNA damage and transcriptional output in the vasculature through a cytoglobin-HMGB2 axis. Redox Biol, 2023, 65: 102838.
DOI:10.1016/j.redox.2023.102838
|
11. |
Arévalo Martínez M, Ritsvall O, Bastrup JA, et al. Vascular smooth muscle-specific YAP/TAZ deletion triggers aneurysm development in mouse aorta. JCI Insight, 2023, 8(17): e170845.
DOI:10.1172/jci.insight.170845
|
12. |
Khanal S, Bhavnani N, Mathias A, et al. Deletion of Smooth Muscle O-GlcNAc Transferase Prevents Development of Atherosclerosis in Western Diet-Fed Hyperglycemic ApoE-/- Mice In Vivo. Int J Mol Sci, 2023, 24(9): 7899.
DOI:10.3390/ijms24097899
|
13. |
Orozco Morales ML, Rinaldi CA, de Jong E, et al. Geldanamycin treatment does not result in anti-cancer activity in a preclinical model of orthotopic mesothelioma. PLoS One, 2023, 18(5): e0274364.
DOI:10.1371/journal.pone.0274364
|
14. |
Zhou Y, Sharma S, Sun X, et al. SMYD2 Regulates Vascular Smooth Muscle Cell Phenotypic Switching and Intimal Hyperplasia via Interaction with Myocardin. Res Sq, 2023.
DOI:10.21203/rs.3.rs-2721176/v1
|
15. |
Wilson C, Zi M, Smith M, et al. Atrioventricular node dysfunction in pressure overload-induced heart failure-Involvement of the immune system and transcriptomic remodelling. Front Pharmacol, 2023, 14: 1083910.
DOI:10.3389/fphar.2023.1083910
|
16. |
He X, Dong K, Shen J, et al. The Long Noncoding RNA Cardiac Mesoderm Enhancer-Associated Noncoding RNA (Carmn) Is a Critical Regulator of Gastrointestinal Smooth Muscle Contractile Function and Motility. Gastroenterology, 2023, 165(1): 71-87.
DOI:10.1053/j.gastro.2023.03.229
|
17. |
Goodwin K, Lemma B, Zhang P, et al. Plasticity in airway smooth muscle differentiation during mouse lung development. Dev Cell, 2023, 58(5): 338-347.
DOI:10.1016/j.devcel.2023.02.002
|
18. |
Darbo E, Pérot G, Darmusey L, et al. Distinct Cellular Origins and Differentiation Process Account for Distinct Oncogenic and Clinical Behaviors of Leiomyosarcomas. Cancers (Basel), 2023, 15(2): 534.
DOI:10.3390/cancers15020534
|
19. |
Mangraviti N, De Windt LJ. Long Non-Coding RNAs in Cardiac Hypertrophy. Front Mol Med, 2022, 2: 836418.
DOI:10.3389/fmmed.2022.836418
|
20. |
Efovi D, Xiao Q. Noncoding RNAs in Vascular Cell Biology and Restenosis. Biology (Basel), 2022, 12(1): 24.
DOI:10.3390/biology12010024
|
21. |
Cheng J, Hou Y, Wang C, et al. Bioinformatics Identification of Aberrantly Methylated Differentially Expressed Genes Associated with Arteriosclerosis by Integrative Analysis of Gene Expression and DNA Methylation Datasets. Genes (Basel), 2022, 13(10): 1818.
DOI:10.3390/genes13101818
|
22. |
Ravarotto V, Bertoldi G, Stefanelli LF, et al. Pathomechanism of oxidative stress in cardiovascularrenal remodeling and therapeutic strategies. Kidney Res Clin Pract, 2022, 41(5): 533-544.
DOI:10.23876/j.krcp.22.069
|
23. |
Lu BH, Liu HB, Guo SX, et al. Long non-coding RNAs: Modulators of phenotypic transformation in vascular smooth muscle cells. Front Cardiovasc Med, 2022, 9: 959955.
DOI:10.3389/fcvm.2022.959955
|
24. |
Liu L, Kryvokhyzha D, Rippe C, et al. Myocardin regulates exon usage in smooth muscle cells through induction of splicing regulatory factors. Cell Mol Life Sci, 2022, 79(8): 459.
DOI:10.1007/s00018-022-04497-7
|
25. |
Matsumura S, D'Addiaro C, Slivano OJ, et al. Mediterranean G6PD variant rats are protected from Angiotensin II-induced hypertension and kidney damage, but not from inflammation and arterial stiffness. Vascul Pharmacol, 2022, 145: 107002.
DOI:10.1016/j.vph.2022.107002
|
26. |
Nonaka R, Iesaki T, Kerever A, et al. Increased Risk of Aortic Dissection with Perlecan Deficiency. Int J Mol Sci, 2021, 23(1): 315.
DOI:10.3390/ijms23010315
|
27. |
Ren J, Miao D, Li Y, et al. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol, 2021, 9: 793605.
DOI:10.3389/fcell.2021.793605
|
28. |
Panagopoulos I, Gorunova L, Andersen K, et al. Fusion of the Paired Box 3 (PAX3) and Myocardin (MYOCD) Genes in Pediatric Rhabdomyosarcoma. Cancer Genomics Proteomics, 2021, 18(6): 723-734.
DOI:10.21873/cgp.20293
|
29. |
Liu L, Bankell E, Rippe C, et al. Cell Type Dependent Suppression of Inflammatory Mediators by Myocardin Related Transcription Factors. Front Physiol, 2021, 12: 732564.
DOI:10.3389/fphys.2021.732564
|
30. |
Du C, Chen X, Su Q, et al. The Function of SUMOylation and Its Critical Roles in Cardiovascular Diseases and Potential Clinical Implications. Int J Mol Sci, 2021, 22(19): 10618.
DOI:10.3390/ijms221910618
|
31. |
Liu M, Espinosa-Diez C, Mahan S, et al. H3K4 di-methylation governs smooth muscle lineage identity and promotes vascular homeostasis by restraining plasticity. Dev Cell, 2021, 56(19): 2765-2782.
DOI:10.1016/j.devcel.2021.09.001
|
32. |
Machado R, Sachinidis A, Futschik ME. Detection of Novel Potential Regulators of Stem Cell Differentiation and Cardiogenesis through Combined Genome-Wide Profiling of Protein-Coding Transcripts and microRNAs. Cells, 2021, 10(9): 2477.
DOI:10.3390/cells10092477
|
33. |
Liu L, Rippe C, Hansson O, et al. Regulation of the Muscarinic M3 Receptor by Myocardin-Related Transcription Factors. Front Physiol, 2021, 12: 710968.
DOI:10.3389/fphys.2021.710968
|
34. |
Dai ZT, Xiang Y, Duan YY, et al. MiR-17-5p and MKL-1 modulate stem cell characteristics of gastric cancer cells. Int J Biol Sci, 2021, 17(9): 2278-2293.
DOI:10.7150/ijbs.57338
|
35. |
Adams E, McCloy R, Jordan A, et al. Direct Reprogramming of Cardiac Fibroblasts to Repair the Injured Heart. J Cardiovasc Dev Dis, 2021, 8(7): 72.
DOI:10.3390/jcdd8070072
|
36. |
Marketou ME, Kontaraki J, Patrianakos A, et al. Long-term prognostic value of myocardin expression levels in non-ischemic dilated cardiomyopathy. Heart Vessels, 2021, 36(12): 1841-1847.
DOI:10.1007/s00380-021-01869-0
|
37. |
Ferris LA, Foote AT, Wang SX, et al. Purine-rich element binding protein B attenuates the coactivator function of myocardin by a novel molecular mechanism of smooth muscle gene repression. Mol Cell Biochem, 2021, 476(8): 2899-2916.
DOI:10.1007/s11010-021-04117-1
|
38. |
Rippe C, Morén B, Liu L, et al. NG2/CSPG4, CD146/MCAM and VAP1/AOC3 are regulated by myocardin-related transcription factors in smooth muscle cells. Sci Rep, 2021, 11(1): 5955.
DOI:10.1038/s41598-021-85335-x
|
39. |
Vacante F, Rodor J, Lalwani MK, et al. CARMN Loss Regulates Smooth Muscle Cells and Accelerates Atherosclerosis in Mice. Circ Res, 2021, 128(9): 1258-1275.
DOI:10.1161/CIRCRESAHA.120.318688
|
40. |
Dhagia V, Kitagawa A, Jacob C, et al. G6PD activity contributes to the regulation of histone acetylation and gene expression in smooth muscle cells and to the pathogenesis of vascular diseases. Am J Physiol Heart Circ Physiol, 2021, 320(3): H999-H1016.
DOI:10.1152/ajpheart.00488.2020
|
41. |
Zheng JP, He X, Liu F, et al. YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation. Sci Rep, 2020, 10(1): 21781.
DOI:10.1038/s41598-020-78544-3
|
42. |
Zhuge Y, Zhang J, Qian F, et al. Role of smooth muscle cells in Cardiovascular Disease. Int J Biol Sci, 2020, 16(14): 2741-2751.
DOI:10.7150/ijbs.49871
|
43. |
Chen B, Yuan Y, Sun L, et al. MKL1 Mediates TGF-β Induced RhoJ Transcription to Promote Breast Cancer Cell Migration and Invasion. Front Cell Dev Biol, 2020, 8: 832.
DOI:10.3389/fcell.2020.00832
|
44. |
Seccia TM, Rigato M, Ravarotto V, et al. ROCK (RhoA/Rho Kinase) in Cardiovascular-Renal Pathophysiology: A Review of New Advancements. J Clin Med, 2020, 9(5): 1328.
DOI:10.3390/jcm9051328
|
45. |
Shen YH, LeMaire SA, Webb NR, et al. Aortic Aneurysms and Dissections Series. Arterioscler Thromb Vasc Biol, 2020, 40(3): e37-e46.
DOI:10.1161/ATVBAHA.120.313991
|
46. |
Xie Y, Martin KA. TCF21: Flipping the Phenotypic Switch in SMC. Circ Res, 2020, 126(4): 530-532.
DOI:10.1161/CIRCRESAHA.120.316533
|
47. |
Shi Z, Ren M, Rockey DC. Myocardin and myocardin-related transcription factor-A synergistically mediate actin cytoskeletal-dependent inhibition of liver fibrogenesis. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G504-G517.
DOI:10.1152/ajpgi.00302.2019
|
48. |
Nagao M, Lyu Q, Zhao Q, et al. Coronary Disease-Associated Gene TCF21 Inhibits Smooth Muscle Cell Differentiation by Blocking the Myocardin-Serum Response Factor Pathway. Circ Res, 2020, 126(4): 517-529.
DOI:10.1161/CIRCRESAHA.119.315968
|
49. |
Choi M, Lu YW, Zhao J, et al. Transcriptional control of a novel long noncoding RNA Mymsl in smooth muscle cells by a single Cis-element and its initial functional characterization in vessels. J Mol Cell Cardiol, 2020, 138: 147-157.
DOI:10.1016/j.yjmcc.2019.11.148
|
50. |
Bankov K, Döring C, Ustaszewski A, et al. Fibroblasts in Nodular Sclerosing Classical Hodgkin Lymphoma Are Defined by a Specific Phenotype and Protect Tumor Cells from Brentuximab-Vedotin Induced Injury. Cancers (Basel), 2019, 11(11): 1687.
DOI:10.3390/cancers11111687
|
51. |
Wen T, Liu J, He X, et al. Transcription factor TEAD1 is essential for vascular development by promoting vascular smooth muscle differentiation. Cell Death Differ, 2019, 26(12): 2790-2806.
DOI:10.1038/s41418-019-0335-4
|
52. |
Wu W, Zhang W, Choi M, et al. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol, 2019, 22: 101137.
DOI:10.1016/j.redox.2019.101137
|
53. |
Tucker T, Tsukasaki Y, Sakai T, et al. Myocardin Is Involved in Mesothelial-Mesenchymal Transition of Human Pleural Mesothelial Cells. Am J Respir Cell Mol Biol, 2019, 61(1): 86-96.
DOI:10.1165/rcmb.2018-0121OC
|
54. |
Herring BP, Hoggatt AM, Gupta A, et al. Gastroparesis is associated with decreased FOXF1 and FOXF2 in humans, and loss of FOXF1 and FOXF2 results in gastroparesis in mice. Neurogastroenterol Motil, 2019, 31(3): e13528.
DOI:10.1111/nmo.13528
|
55. |
Lacey M, Baribault C, Ehrlich KC, et al. Atherosclerosis-associated differentially methylated regions can reflect the disease phenotype and are often at enhancers. Atherosclerosis, 2019, 280: 183-191.
DOI:10.1016/j.atherosclerosis.2018.11.031
|
56. |
Iyer D, Zhao Q, Wirka R, et al. Coronary artery disease genes SMAD3 and TCF21 promote opposing interactive genetic programs that regulate smooth muscle cell differentiation and disease risk. PLoS Genet, 2018, 14(10): e1007681.
DOI:10.1371/journal.pgen.1007681
|
57. |
Miano JM, Long X. CRISPR-tagging mice in aging research. Aging (Albany NY), 2018, 10(9): 2226-2227.
DOI:10.18632/aging.101566
|
58. |
Zhu B, Rippe C, Holmberg J, et al. Nexilin/NEXN controls actin polymerization in smooth muscle and is regulated by myocardin family coactivators and YAP. Sci Rep, 2018, 8(1): 13025.
DOI:10.1038/s41598-018-31328-2
|
59. |
Ahmed ASI, Dong K, Liu J, et al. Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc Natl Acad Sci U S A, 2018, 115(37): E8660-E8667.
DOI:10.1073/pnas.1803725115
|
60. |
Hirai H, Yang B, Garcia-Barrio MT, et al. Direct Reprogramming of Fibroblasts Into Smooth Muscle-Like Cells With Defined Transcription Factors-Brief Report. Arterioscler Thromb Vasc Biol, 2018, 38(9): 2191-2197.
DOI:10.1161/ATVBAHA.118.310870
|
61. |
Gao P, Wu W, Ye J, et al. Transforming growth factor β1 suppresses proinflammatory gene program independent of its regulation on vascular smooth muscle differentiation and autophagy. Cell Signal, 2018, 50: 160-170.
DOI:10.1016/j.cellsig.2018.07.002
|
62. |
Lyu Q, Dhagia V, Han Y, et al. CRISPR-Cas9-Mediated Epitope Tagging Provides Accurate and Versatile Assessment of Myocardin-Brief Report. Arterioscler Thromb Vasc Biol, 2018, 38(9): 2184-2190.
DOI:10.1161/ATVBAHA.118.311171
|
63. |
Majesky MW. Vascular Development. Arterioscler Thromb Vasc Biol, 2018, 38(3): e17-e24.
DOI:10.1161/ATVBAHA.118.310223
|
64. |
Allahverdian S, Chaabane C, Boukais K, et al. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res, 2018, 114(4): 540-550.
DOI:10.1093/cvr/cvy022
|
65. |
Guo B, Lyu Q, Slivano OJ, et al. Serum Response Factor Is Essential for Maintenance of Podocyte Structure and Function. J Am Soc Nephrol, 2018, 29(2): 416-422.
DOI:10.1681/ASN.2017050473
|
66. |
Gordon JW. Regulation of cardiac myocyte cell death and differentiation by myocardin. Mol Cell Biochem, 2018, 437(1-2): 119-131.
DOI:10.1007/s11010-017-3100-3
|
67. |
Krawczyk KM, Hansson J, Nilsson H, et al. Injury induced expression of caveolar proteins in human kidney tubules - role of megakaryoblastic leukemia 1. BMC Nephrol, 2017, 18(1): 320.
DOI:10.1186/s12882-017-0738-8
|
68. |
Jin Y, Xie Y, Ostriker AC, et al. Opposing Actions of AKT (Protein Kinase B) Isoforms in Vascular Smooth Muscle Injury and Therapeutic Response. Arterioscler Thromb Vasc Biol, 2017, 37(12): 2311-2321.
DOI:10.1161/ATVBAHA.117.310053
|
69. |
Ignatieva E, Kostina D, Irtyuga O, et al. Mechanisms of Smooth Muscle Cell Differentiation Are Distinctly Altered in Thoracic Aortic Aneurysms Associated with Bicuspid or Tricuspid Aortic Valves. Front Physiol, 2017, 8: 536.
DOI:10.3389/fphys.2017.00536
|
70. |
Singh J, Mohanty I, Addya S, et al. Role of differentially expressed microRNA-139-5p in the regulation of phenotypic internal anal sphincter smooth muscle tone. Sci Rep, 2017, 7(1): 1477.
DOI:10.1038/s41598-017-01550-5
|
71. |
Anderson CM, Hu J, Thomas R, et al. Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites. Development, 2017, 144(7): 1235-1241.
DOI:10.1242/dev.138487
|
72. |
Zhao J, Wu W, Zhang W, et al. Selective expression of TSPAN2 in vascular smooth muscle is independently regulated by TGF-β1/SMAD and myocardin/serum response factor. FASEB J, 2017, 31(6): 2576-2591.
DOI:10.1096/fj.201601021R
|
73. |
Wang L, Qiu P, Jiao J, et al. Yes-Associated Protein Inhibits Transcription of Myocardin and Attenuates Differentiation of Vascular Smooth Muscle Cell from Cardiovascular Progenitor Cell Lineage. Stem Cells, 2017, 35(2): 351-361.
DOI:10.1002/stem.2484
|
74. |
Majesky MW. Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol, 2016, 36(10): e82-6.
DOI:10.1161/ATVBAHA.116.308261
|
75. |
Naya FJ, Wang DZ. (MYO)SLIDing Our Way Into the Vascular Pool of Long Noncoding RNAs. Arterioscler Thromb Vasc Biol, 2016, 36(10): 2033-4.
DOI:10.1161/ATVBAHA.116.308173
|
76. |
Krawczyk KK, Ekman M, Rippe C, et al. Assessing the contribution of thrombospondin-4 induction and ATF6α activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Sci Rep, 2016, 6: 32449.
DOI:10.1038/srep32449
|
77. |
Chettimada S, Joshi SR, Dhagia V, et al. Vascular smooth muscle cell contractile protein expression is increased through protein kinase G-dependent and -independent pathways by glucose-6-phosphate dehydrogenase inhibition and deficiency. Am J Physiol Heart Circ Physiol, 2016, 311(4): H904-H912.
DOI:10.1152/ajpheart.00335.2016
|
78. |
Liu R, Bauer AJ, Martin KA. A New Editor of Smooth Muscle Phenotype. Circ Res, 2016, 119(3): 401-3.
DOI:10.1161/CIRCRESAHA.116.309218
|
79. |
Zhao J, Zhang W, Lin M, et al. MYOSLID Is a Novel Serum Response Factor-Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program. Arterioscler Thromb Vasc Biol, 2016, 36(10): 2088-99.
DOI:10.1161/ATVBAHA.116.307879
|
80. |
Mikhailov AT, Torrado M. Myocardial transcription factors in diastolic dysfunction: clues for model systems and disease. Heart Fail Rev, 2016, 21(6): 783-794.
DOI:10.1007/s10741-016-9569-0
|
81. |
Sahoo S, Meijles DN, Al Ghouleh I, et al. MEF2C-MYOCD and Leiomodin1 Suppression by miRNA-214 Promotes Smooth Muscle Cell Phenotype Switching in Pulmonary Arterial Hypertension. PLoS One, 2016, 11(5): e0153780.
DOI:10.1371/journal.pone.0153780
|
82. |
Ji H, Atchison L, Chen Z, et al. Transdifferentiation of human endothelial progenitors into smooth muscle cells. Biomaterials, 2016, 85: 180-194.
DOI:10.1016/j.biomaterials.2016.01.066
|
83. |
Krawczyk KK, Yao Mattisson I, Ekman M, et al. Myocardin Family Members Drive Formation of Caveolae. PLoS One, 2015, 10(8): e0133931.
DOI:10.1371/journal.pone.0133931
|
84. |
Shi N, Chen SY. From nerve to blood vessel: a new role of Olfm2 in smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. J Biomed Res, 2015, 29(4): 261-3.
DOI:10.7555/JBR.29.20150027
|
85. |
Torrado M, Franco D, Lozano-Velasco E, et al. A MicroRNA-Transcription Factor Blueprint for Early Atrial Arrhythmogenic Remodeling. Biomed Res Int, 2015, 2015: 263151.
DOI:10.1155/2015/263151
|