4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Joseph M. Miano. Myocardin in biology and disease[J]. The Journal of Biomedical Research, 2015, 29(1): 3-19. DOI: 10.7555/JBR. 29.20140151
Citation: Joseph M. Miano. Myocardin in biology and disease[J]. The Journal of Biomedical Research, 2015, 29(1): 3-19. DOI: 10.7555/JBR. 29.20140151

Myocardin in biology and disease

More Information
  • Received Date: November 19, 2014
  • Revised Date: December 09, 2014
  • Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
  • Related Articles

    [1]Lianjun Shi, Huimin Ge, Fan Ye, Xiumiao Li, Qin Jiang. The role of pericyte in ocular vascular diseases[J]. The Journal of Biomedical Research, 2024, 38(6): 521-530. DOI: 10.7555/JBR.37.20230314
    [2]Wenting He, Xiuyu Shi, Zhifang Dong. The roles of RACK1 in the pathogenesis of Alzheimer's disease[J]. The Journal of Biomedical Research, 2024, 38(2): 137-148. DOI: 10.7555/JBR.37.20220259
    [3]Hongyan Li, Zhiyou Cai. SIRT3 regulates mitochondrial biogenesis in aging-related diseases[J]. The Journal of Biomedical Research, 2023, 37(2): 77-88. DOI: 10.7555/JBR.36.20220078
    [4]Weixi Feng, Yanli Zhang, Peng Sun, Ming Xiao. Acquired immunity and Alzheimer's disease[J]. The Journal of Biomedical Research, 2023, 37(1): 15-29. DOI: 10.7555/JBR.36.20220083
    [5]Tao Dang, Wen-Jing Cao, Rong Zhao, Ming Lu, Gang Hu, Chen Qiao. ATP13A2 protects dopaminergic neurons in Parkinson's disease: from biology to pathology[J]. The Journal of Biomedical Research, 2022, 36(2): 98-108. DOI: 10.7555/JBR.36.20220001
    [6]Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045
    [7]Peter Metrakos, Tommy Nilsson. Non-alcoholic fatty liver disease–a chronic disease of the 21st century[J]. The Journal of Biomedical Research, 2018, 32(5): 327-335. DOI: 10.7555/JBR.31.20160153
    [8]Jiawei Liao, Wei Huang, George Liu. Animal models of coronary heart disease[J]. The Journal of Biomedical Research, 2017, 31(1): 3-10. DOI: 10.7555/JBR.30.20150051
    [9]Mingzi Song, Mingming Fang, Liming Yu, Yong Xu. Myocardin-related transcription factor A cooperates with brahmarelated gene 1 to activate P-selectin transcription[J]. The Journal of Biomedical Research, 2016, 30(1): 60-66. DOI: 10.7555/JBR.30.20150082
    [10]Pei-Chi Yang, Colleen E. Clancy. Gender-based differences in cardiac diseases[J]. The Journal of Biomedical Research, 2011, 25(2): 81-89. DOI: 10.1016/S1674-8301(11)60010-9
  • Cited by

    Periodical cited type(85)

    1. Arroyo-Ataz G, Yagüe AC, Breda JC, et al. Transcriptional, developmental, and functional parallels of lymphatic and venous smooth muscle. bioRxiv, 2024. DOI:10.1101/2024.07.18.604042
    2. Chen X, Obukhov AG, Weisman GA, et al. Basal ATP release signals through the P2Y2 receptor to maintain the differentiated phenotype of vascular smooth muscle cells. Atherosclerosis, 2024, 395: 117613. DOI:10.1016/j.atherosclerosis.2024.117613
    3. Salido E, de Medeiros Vieira C, Mosquera JV, et al. The 9p21.3 coronary artery disease risk locus drives vascular smooth muscle cells to an osteochondrogenic state. bioRxiv, 2024. DOI:10.1101/2024.05.25.595888
    4. Jin Y, Han X, Wang Y, et al. METTL7A-mediated m6A modification of corin reverses bisphosphonates-impaired osteogenic differentiation of orofacial BMSCs. Int J Oral Sci, 2024, 16(1): 42. DOI:10.1038/s41368-024-00303-1
    5. Wei G, Zhang X, Liu S, et al. Comprehensive data mining reveals RTK/RAS signaling pathway as a promoter of prostate cancer lineage plasticity through transcription factors and CNV. Sci Rep, 2024, 14(1): 11688. DOI:10.1038/s41598-024-62256-z
    6. Wachtel M, Surdez D, Grünewald TGP, et al. Functional Classification of Fusion Proteins in Sarcoma. Cancers (Basel), 2024, 16(7): 1355. DOI:10.3390/cancers16071355
    7. Gan P, Eppert M, De La Cruz N, et al. Coactivator condensation drives cardiovascular cell lineage specification. Sci Adv, 2024, 10(11): eadk7160. DOI:10.1126/sciadv.adk7160
    8. Mann EA, Mogle MS, Park JS, et al. Transcription factor Tcf21 modulates urinary bladder size and differentiation. Dev Growth Differ, 2024, 66(2): 106-118. DOI:10.1111/dgd.12906
    9. Zhou Y, Sharma S, Sun X, et al. SMYD2 regulates vascular smooth muscle cell phenotypic switching and intimal hyperplasia via interaction with myocardin. Cell Mol Life Sci, 2023, 80(9): 264. DOI:10.1007/s00018-023-04883-9
    10. Mathai C, Jourd'heuil F, Pham LGC, et al. Regulation of DNA damage and transcriptional output in the vasculature through a cytoglobin-HMGB2 axis. Redox Biol, 2023, 65: 102838. DOI:10.1016/j.redox.2023.102838
    11. Arévalo Martínez M, Ritsvall O, Bastrup JA, et al. Vascular smooth muscle-specific YAP/TAZ deletion triggers aneurysm development in mouse aorta. JCI Insight, 2023, 8(17): e170845. DOI:10.1172/jci.insight.170845
    12. Khanal S, Bhavnani N, Mathias A, et al. Deletion of Smooth Muscle O-GlcNAc Transferase Prevents Development of Atherosclerosis in Western Diet-Fed Hyperglycemic ApoE-/- Mice In Vivo. Int J Mol Sci, 2023, 24(9): 7899. DOI:10.3390/ijms24097899
    13. Orozco Morales ML, Rinaldi CA, de Jong E, et al. Geldanamycin treatment does not result in anti-cancer activity in a preclinical model of orthotopic mesothelioma. PLoS One, 2023, 18(5): e0274364. DOI:10.1371/journal.pone.0274364
    14. Zhou Y, Sharma S, Sun X, et al. SMYD2 Regulates Vascular Smooth Muscle Cell Phenotypic Switching and Intimal Hyperplasia via Interaction with Myocardin. Res Sq, 2023. DOI:10.21203/rs.3.rs-2721176/v1
    15. Wilson C, Zi M, Smith M, et al. Atrioventricular node dysfunction in pressure overload-induced heart failure-Involvement of the immune system and transcriptomic remodelling. Front Pharmacol, 2023, 14: 1083910. DOI:10.3389/fphar.2023.1083910
    16. He X, Dong K, Shen J, et al. The Long Noncoding RNA Cardiac Mesoderm Enhancer-Associated Noncoding RNA (Carmn) Is a Critical Regulator of Gastrointestinal Smooth Muscle Contractile Function and Motility. Gastroenterology, 2023, 165(1): 71-87. DOI:10.1053/j.gastro.2023.03.229
    17. Goodwin K, Lemma B, Zhang P, et al. Plasticity in airway smooth muscle differentiation during mouse lung development. Dev Cell, 2023, 58(5): 338-347. DOI:10.1016/j.devcel.2023.02.002
    18. Darbo E, Pérot G, Darmusey L, et al. Distinct Cellular Origins and Differentiation Process Account for Distinct Oncogenic and Clinical Behaviors of Leiomyosarcomas. Cancers (Basel), 2023, 15(2): 534. DOI:10.3390/cancers15020534
    19. Mangraviti N, De Windt LJ. Long Non-Coding RNAs in Cardiac Hypertrophy. Front Mol Med, 2022, 2: 836418. DOI:10.3389/fmmed.2022.836418
    20. Efovi D, Xiao Q. Noncoding RNAs in Vascular Cell Biology and Restenosis. Biology (Basel), 2022, 12(1): 24. DOI:10.3390/biology12010024
    21. Cheng J, Hou Y, Wang C, et al. Bioinformatics Identification of Aberrantly Methylated Differentially Expressed Genes Associated with Arteriosclerosis by Integrative Analysis of Gene Expression and DNA Methylation Datasets. Genes (Basel), 2022, 13(10): 1818. DOI:10.3390/genes13101818
    22. Ravarotto V, Bertoldi G, Stefanelli LF, et al. Pathomechanism of oxidative stress in cardiovascularrenal remodeling and therapeutic strategies. Kidney Res Clin Pract, 2022, 41(5): 533-544. DOI:10.23876/j.krcp.22.069
    23. Lu BH, Liu HB, Guo SX, et al. Long non-coding RNAs: Modulators of phenotypic transformation in vascular smooth muscle cells. Front Cardiovasc Med, 2022, 9: 959955. DOI:10.3389/fcvm.2022.959955
    24. Liu L, Kryvokhyzha D, Rippe C, et al. Myocardin regulates exon usage in smooth muscle cells through induction of splicing regulatory factors. Cell Mol Life Sci, 2022, 79(8): 459. DOI:10.1007/s00018-022-04497-7
    25. Matsumura S, D'Addiaro C, Slivano OJ, et al. Mediterranean G6PD variant rats are protected from Angiotensin II-induced hypertension and kidney damage, but not from inflammation and arterial stiffness. Vascul Pharmacol, 2022, 145: 107002. DOI:10.1016/j.vph.2022.107002
    26. Nonaka R, Iesaki T, Kerever A, et al. Increased Risk of Aortic Dissection with Perlecan Deficiency. Int J Mol Sci, 2021, 23(1): 315. DOI:10.3390/ijms23010315
    27. Ren J, Miao D, Li Y, et al. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol, 2021, 9: 793605. DOI:10.3389/fcell.2021.793605
    28. Panagopoulos I, Gorunova L, Andersen K, et al. Fusion of the Paired Box 3 (PAX3) and Myocardin (MYOCD) Genes in Pediatric Rhabdomyosarcoma. Cancer Genomics Proteomics, 2021, 18(6): 723-734. DOI:10.21873/cgp.20293
    29. Liu L, Bankell E, Rippe C, et al. Cell Type Dependent Suppression of Inflammatory Mediators by Myocardin Related Transcription Factors. Front Physiol, 2021, 12: 732564. DOI:10.3389/fphys.2021.732564
    30. Du C, Chen X, Su Q, et al. The Function of SUMOylation and Its Critical Roles in Cardiovascular Diseases and Potential Clinical Implications. Int J Mol Sci, 2021, 22(19): 10618. DOI:10.3390/ijms221910618
    31. Liu M, Espinosa-Diez C, Mahan S, et al. H3K4 di-methylation governs smooth muscle lineage identity and promotes vascular homeostasis by restraining plasticity. Dev Cell, 2021, 56(19): 2765-2782. DOI:10.1016/j.devcel.2021.09.001
    32. Machado R, Sachinidis A, Futschik ME. Detection of Novel Potential Regulators of Stem Cell Differentiation and Cardiogenesis through Combined Genome-Wide Profiling of Protein-Coding Transcripts and microRNAs. Cells, 2021, 10(9): 2477. DOI:10.3390/cells10092477
    33. Liu L, Rippe C, Hansson O, et al. Regulation of the Muscarinic M3 Receptor by Myocardin-Related Transcription Factors. Front Physiol, 2021, 12: 710968. DOI:10.3389/fphys.2021.710968
    34. Dai ZT, Xiang Y, Duan YY, et al. MiR-17-5p and MKL-1 modulate stem cell characteristics of gastric cancer cells. Int J Biol Sci, 2021, 17(9): 2278-2293. DOI:10.7150/ijbs.57338
    35. Adams E, McCloy R, Jordan A, et al. Direct Reprogramming of Cardiac Fibroblasts to Repair the Injured Heart. J Cardiovasc Dev Dis, 2021, 8(7): 72. DOI:10.3390/jcdd8070072
    36. Marketou ME, Kontaraki J, Patrianakos A, et al. Long-term prognostic value of myocardin expression levels in non-ischemic dilated cardiomyopathy. Heart Vessels, 2021, 36(12): 1841-1847. DOI:10.1007/s00380-021-01869-0
    37. Ferris LA, Foote AT, Wang SX, et al. Purine-rich element binding protein B attenuates the coactivator function of myocardin by a novel molecular mechanism of smooth muscle gene repression. Mol Cell Biochem, 2021, 476(8): 2899-2916. DOI:10.1007/s11010-021-04117-1
    38. Rippe C, Morén B, Liu L, et al. NG2/CSPG4, CD146/MCAM and VAP1/AOC3 are regulated by myocardin-related transcription factors in smooth muscle cells. Sci Rep, 2021, 11(1): 5955. DOI:10.1038/s41598-021-85335-x
    39. Vacante F, Rodor J, Lalwani MK, et al. CARMN Loss Regulates Smooth Muscle Cells and Accelerates Atherosclerosis in Mice. Circ Res, 2021, 128(9): 1258-1275. DOI:10.1161/CIRCRESAHA.120.318688
    40. Dhagia V, Kitagawa A, Jacob C, et al. G6PD activity contributes to the regulation of histone acetylation and gene expression in smooth muscle cells and to the pathogenesis of vascular diseases. Am J Physiol Heart Circ Physiol, 2021, 320(3): H999-H1016. DOI:10.1152/ajpheart.00488.2020
    41. Zheng JP, He X, Liu F, et al. YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation. Sci Rep, 2020, 10(1): 21781. DOI:10.1038/s41598-020-78544-3
    42. Zhuge Y, Zhang J, Qian F, et al. Role of smooth muscle cells in Cardiovascular Disease. Int J Biol Sci, 2020, 16(14): 2741-2751. DOI:10.7150/ijbs.49871
    43. Chen B, Yuan Y, Sun L, et al. MKL1 Mediates TGF-β Induced RhoJ Transcription to Promote Breast Cancer Cell Migration and Invasion. Front Cell Dev Biol, 2020, 8: 832. DOI:10.3389/fcell.2020.00832
    44. Seccia TM, Rigato M, Ravarotto V, et al. ROCK (RhoA/Rho Kinase) in Cardiovascular-Renal Pathophysiology: A Review of New Advancements. J Clin Med, 2020, 9(5): 1328. DOI:10.3390/jcm9051328
    45. Shen YH, LeMaire SA, Webb NR, et al. Aortic Aneurysms and Dissections Series. Arterioscler Thromb Vasc Biol, 2020, 40(3): e37-e46. DOI:10.1161/ATVBAHA.120.313991
    46. Xie Y, Martin KA. TCF21: Flipping the Phenotypic Switch in SMC. Circ Res, 2020, 126(4): 530-532. DOI:10.1161/CIRCRESAHA.120.316533
    47. Shi Z, Ren M, Rockey DC. Myocardin and myocardin-related transcription factor-A synergistically mediate actin cytoskeletal-dependent inhibition of liver fibrogenesis. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G504-G517. DOI:10.1152/ajpgi.00302.2019
    48. Nagao M, Lyu Q, Zhao Q, et al. Coronary Disease-Associated Gene TCF21 Inhibits Smooth Muscle Cell Differentiation by Blocking the Myocardin-Serum Response Factor Pathway. Circ Res, 2020, 126(4): 517-529. DOI:10.1161/CIRCRESAHA.119.315968
    49. Choi M, Lu YW, Zhao J, et al. Transcriptional control of a novel long noncoding RNA Mymsl in smooth muscle cells by a single Cis-element and its initial functional characterization in vessels. J Mol Cell Cardiol, 2020, 138: 147-157. DOI:10.1016/j.yjmcc.2019.11.148
    50. Bankov K, Döring C, Ustaszewski A, et al. Fibroblasts in Nodular Sclerosing Classical Hodgkin Lymphoma Are Defined by a Specific Phenotype and Protect Tumor Cells from Brentuximab-Vedotin Induced Injury. Cancers (Basel), 2019, 11(11): 1687. DOI:10.3390/cancers11111687
    51. Wen T, Liu J, He X, et al. Transcription factor TEAD1 is essential for vascular development by promoting vascular smooth muscle differentiation. Cell Death Differ, 2019, 26(12): 2790-2806. DOI:10.1038/s41418-019-0335-4
    52. Wu W, Zhang W, Choi M, et al. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol, 2019, 22: 101137. DOI:10.1016/j.redox.2019.101137
    53. Tucker T, Tsukasaki Y, Sakai T, et al. Myocardin Is Involved in Mesothelial-Mesenchymal Transition of Human Pleural Mesothelial Cells. Am J Respir Cell Mol Biol, 2019, 61(1): 86-96. DOI:10.1165/rcmb.2018-0121OC
    54. Herring BP, Hoggatt AM, Gupta A, et al. Gastroparesis is associated with decreased FOXF1 and FOXF2 in humans, and loss of FOXF1 and FOXF2 results in gastroparesis in mice. Neurogastroenterol Motil, 2019, 31(3): e13528. DOI:10.1111/nmo.13528
    55. Lacey M, Baribault C, Ehrlich KC, et al. Atherosclerosis-associated differentially methylated regions can reflect the disease phenotype and are often at enhancers. Atherosclerosis, 2019, 280: 183-191. DOI:10.1016/j.atherosclerosis.2018.11.031
    56. Iyer D, Zhao Q, Wirka R, et al. Coronary artery disease genes SMAD3 and TCF21 promote opposing interactive genetic programs that regulate smooth muscle cell differentiation and disease risk. PLoS Genet, 2018, 14(10): e1007681. DOI:10.1371/journal.pgen.1007681
    57. Miano JM, Long X. CRISPR-tagging mice in aging research. Aging (Albany NY), 2018, 10(9): 2226-2227. DOI:10.18632/aging.101566
    58. Zhu B, Rippe C, Holmberg J, et al. Nexilin/NEXN controls actin polymerization in smooth muscle and is regulated by myocardin family coactivators and YAP. Sci Rep, 2018, 8(1): 13025. DOI:10.1038/s41598-018-31328-2
    59. Ahmed ASI, Dong K, Liu J, et al. Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc Natl Acad Sci U S A, 2018, 115(37): E8660-E8667. DOI:10.1073/pnas.1803725115
    60. Hirai H, Yang B, Garcia-Barrio MT, et al. Direct Reprogramming of Fibroblasts Into Smooth Muscle-Like Cells With Defined Transcription Factors-Brief Report. Arterioscler Thromb Vasc Biol, 2018, 38(9): 2191-2197. DOI:10.1161/ATVBAHA.118.310870
    61. Gao P, Wu W, Ye J, et al. Transforming growth factor β1 suppresses proinflammatory gene program independent of its regulation on vascular smooth muscle differentiation and autophagy. Cell Signal, 2018, 50: 160-170. DOI:10.1016/j.cellsig.2018.07.002
    62. Lyu Q, Dhagia V, Han Y, et al. CRISPR-Cas9-Mediated Epitope Tagging Provides Accurate and Versatile Assessment of Myocardin-Brief Report. Arterioscler Thromb Vasc Biol, 2018, 38(9): 2184-2190. DOI:10.1161/ATVBAHA.118.311171
    63. Majesky MW. Vascular Development. Arterioscler Thromb Vasc Biol, 2018, 38(3): e17-e24. DOI:10.1161/ATVBAHA.118.310223
    64. Allahverdian S, Chaabane C, Boukais K, et al. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res, 2018, 114(4): 540-550. DOI:10.1093/cvr/cvy022
    65. Guo B, Lyu Q, Slivano OJ, et al. Serum Response Factor Is Essential for Maintenance of Podocyte Structure and Function. J Am Soc Nephrol, 2018, 29(2): 416-422. DOI:10.1681/ASN.2017050473
    66. Gordon JW. Regulation of cardiac myocyte cell death and differentiation by myocardin. Mol Cell Biochem, 2018, 437(1-2): 119-131. DOI:10.1007/s11010-017-3100-3
    67. Krawczyk KM, Hansson J, Nilsson H, et al. Injury induced expression of caveolar proteins in human kidney tubules - role of megakaryoblastic leukemia 1. BMC Nephrol, 2017, 18(1): 320. DOI:10.1186/s12882-017-0738-8
    68. Jin Y, Xie Y, Ostriker AC, et al. Opposing Actions of AKT (Protein Kinase B) Isoforms in Vascular Smooth Muscle Injury and Therapeutic Response. Arterioscler Thromb Vasc Biol, 2017, 37(12): 2311-2321. DOI:10.1161/ATVBAHA.117.310053
    69. Ignatieva E, Kostina D, Irtyuga O, et al. Mechanisms of Smooth Muscle Cell Differentiation Are Distinctly Altered in Thoracic Aortic Aneurysms Associated with Bicuspid or Tricuspid Aortic Valves. Front Physiol, 2017, 8: 536. DOI:10.3389/fphys.2017.00536
    70. Singh J, Mohanty I, Addya S, et al. Role of differentially expressed microRNA-139-5p in the regulation of phenotypic internal anal sphincter smooth muscle tone. Sci Rep, 2017, 7(1): 1477. DOI:10.1038/s41598-017-01550-5
    71. Anderson CM, Hu J, Thomas R, et al. Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites. Development, 2017, 144(7): 1235-1241. DOI:10.1242/dev.138487
    72. Zhao J, Wu W, Zhang W, et al. Selective expression of TSPAN2 in vascular smooth muscle is independently regulated by TGF-β1/SMAD and myocardin/serum response factor. FASEB J, 2017, 31(6): 2576-2591. DOI:10.1096/fj.201601021R
    73. Wang L, Qiu P, Jiao J, et al. Yes-Associated Protein Inhibits Transcription of Myocardin and Attenuates Differentiation of Vascular Smooth Muscle Cell from Cardiovascular Progenitor Cell Lineage. Stem Cells, 2017, 35(2): 351-361. DOI:10.1002/stem.2484
    74. Majesky MW. Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol, 2016, 36(10): e82-6. DOI:10.1161/ATVBAHA.116.308261
    75. Naya FJ, Wang DZ. (MYO)SLIDing Our Way Into the Vascular Pool of Long Noncoding RNAs. Arterioscler Thromb Vasc Biol, 2016, 36(10): 2033-4. DOI:10.1161/ATVBAHA.116.308173
    76. Krawczyk KK, Ekman M, Rippe C, et al. Assessing the contribution of thrombospondin-4 induction and ATF6α activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Sci Rep, 2016, 6: 32449. DOI:10.1038/srep32449
    77. Chettimada S, Joshi SR, Dhagia V, et al. Vascular smooth muscle cell contractile protein expression is increased through protein kinase G-dependent and -independent pathways by glucose-6-phosphate dehydrogenase inhibition and deficiency. Am J Physiol Heart Circ Physiol, 2016, 311(4): H904-H912. DOI:10.1152/ajpheart.00335.2016
    78. Liu R, Bauer AJ, Martin KA. A New Editor of Smooth Muscle Phenotype. Circ Res, 2016, 119(3): 401-3. DOI:10.1161/CIRCRESAHA.116.309218
    79. Zhao J, Zhang W, Lin M, et al. MYOSLID Is a Novel Serum Response Factor-Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program. Arterioscler Thromb Vasc Biol, 2016, 36(10): 2088-99. DOI:10.1161/ATVBAHA.116.307879
    80. Mikhailov AT, Torrado M. Myocardial transcription factors in diastolic dysfunction: clues for model systems and disease. Heart Fail Rev, 2016, 21(6): 783-794. DOI:10.1007/s10741-016-9569-0
    81. Sahoo S, Meijles DN, Al Ghouleh I, et al. MEF2C-MYOCD and Leiomodin1 Suppression by miRNA-214 Promotes Smooth Muscle Cell Phenotype Switching in Pulmonary Arterial Hypertension. PLoS One, 2016, 11(5): e0153780. DOI:10.1371/journal.pone.0153780
    82. Ji H, Atchison L, Chen Z, et al. Transdifferentiation of human endothelial progenitors into smooth muscle cells. Biomaterials, 2016, 85: 180-194. DOI:10.1016/j.biomaterials.2016.01.066
    83. Krawczyk KK, Yao Mattisson I, Ekman M, et al. Myocardin Family Members Drive Formation of Caveolae. PLoS One, 2015, 10(8): e0133931. DOI:10.1371/journal.pone.0133931
    84. Shi N, Chen SY. From nerve to blood vessel: a new role of Olfm2 in smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. J Biomed Res, 2015, 29(4): 261-3. DOI:10.7555/JBR.29.20150027
    85. Torrado M, Franco D, Lozano-Velasco E, et al. A MicroRNA-Transcription Factor Blueprint for Early Atrial Arrhythmogenic Remodeling. Biomed Res Int, 2015, 2015: 263151. DOI:10.1155/2015/263151

    Other cited types(1)

Catalog

    Article Metrics

    Article views (3330) PDF downloads (858) Cited by(86)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return